Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition

发布者:系统管理员发布时间:2013-10-24浏览次数:1502

报告题目: Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition
报 告 人: 祁力群 教授
  香港理工大学
报告时间: 10月30日上午10:00
报告地点: 九龙湖数学系第一报告厅
相关介绍:
报告人简介:祁力群教授于1968年在清华大学获得计算数学学士学位,并于1981年和1984年在Wisconsin-Madison大学获得计算科学硕士和博士学位。祁力群教授曾在清华大学,Wisconsin- Madison大学, New South Wales大学和香港城市大学任教,现在他于香港理工大学应用数学系担任首席教授(Chair Professor)。祁力群教授现已在各类国际期刊上发表了200多篇论文。他建立了半光滑牛顿法的超线性和二次收敛性理论。现在,祁力群教授的主要研究方向逐渐转移到张量的理论和应用上。祁力群教授的论文被世界范围的研究者广泛引用,他是世界上被引用次数最高的前300位数学家中的一位。

报告摘要是:Hankel tensors arise from applications such as signal processing. In
this paper, we make an initial study on Hankel tensors.   For each
Hankel tensor, we associate it with a Hankel matrix and a higher
order two-dimensional symmetric tensor, which we call the associated
plane tensor.   If the associated Hankel matrix is positive
semi-definite, we call such a Hankel tensor a strong Hankel tensor.
We show that an $m$ order $n$-dimensional tensor is a Hankel tensor
if and only if it has a Vandermonde decomposition.   We call a
Hankel tensor a complete Hankel tensor if it has a Vandermonde
decomposition with positive coefficients.   We prove that if a
Hankel tensor is copositive or an even order Hankel tensor is
positive semi-definite, then the associated plane tensor is
copositive or positive semi-definite, respectively.   We show that
even order strong and complete Hankel tensors are positive
semi-definite, and the Hadamard product of two strong Hankel tensors
is also a strong Hankel tensor. We show that all the H-eigenvalue of
a complete Hankel tensors (maybe of odd order) are nonnegative.   We
give some upper bounds and lower bounds for the smallest and the
largest Z-eigenvalues of a Hankel tensor, respectively.   Further
questions on Hankel tensors are raised.